
THE THEORY OF SEDIhlENTATION ANALYSIS’! 

J. W. WILLIAMS, KEKSAL E. VAN HOLDE,3 AND ROBERT L. BALDWIN 

Wisconsin,  Madison, Wisconsin 
Departments of Chemistry, Biochemistry, and Dairy and Food Industries, University of 

AND 

HIROSHI FUJITA 

Physical Chemistry Laboratory, Department of Fisheries, University of 
Kyoto, Maizuru, Japan  

Received March 28, 1968 

Introduction 

CONTENTS 

. . . . . . . . . .  716 

Par t  I. The sedimentation-diffusion equilibrium 

I. Introductory remarks. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  719 

. . . . . . . . . . . . . . . . .  720 
A. Basic definitions and equations. . .  . . . . . . . . . . . . . . . . .  719 
B. Equilibrium for transfer between p 
C. Concentration scales.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

11. Binary sys tems, .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A. Incompressible solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  721 
B. Pressure corrections . . . . . . . . . . . . . . . .  , . , , . , . , , 725 

111. Ternary systems..  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  727 
.4. The general equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  727 
B. The “binding” coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728 

IV. Strong electrolytes. . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  731 
V. Sedimentation equilibrium in a density gradient..  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  735 

VI. Multicomponent systems . . . . . . . . . . . . . . . . . . . . . . .  736 
A. Average molecular we . . . . . . . . . . . . . . . . . . . . . . .  i 3 6  
B. Distribution functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  740 

VII. The time required to  attain sedimentation equilibrium . . . . . . . . . . . . . . . . . . .  742 
VIII.  References.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  743 

Part  11. Velocity sedimentation 

I. Introduction.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  745 
A. Scope of Part  11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  745 
B. Quantities measured in sedimentation experiments. . . . . . . . . . . . . . . . . . . . .  715 

1 Published n i th  the approval of the Director of the Wisconsin Agricultural Experiment 
Station. 

* The preparation of this review was made possible by grants from the National In- 
stitutes of Health (G-4196 and G-4912), the Rockefeller Foundation, and the Wisconsin 
Alumni Research Foundation. In addition, one of the authors (J.W.W.) was the recipient 
of a John Simon Guggenheim Memorial Foundation Fellowship, 1956-57, to  provide for his 
participation. 

The authors wish to  thank Drs. L. J. Gosting, G. J. Hooj.man, and V. J. MacCosham for 
helpful criticisms of the manuscript in whole or in part .  Also, there have been made avail- 
able the texts of articles by Drs. J .  R. Cann and H. K.  Schachman before their publication. 

3 Permanent address : Department of Chemistry and Chemical Engineering, University 
of Illinois, Urbana, Illinois. 

715 



716 TTILLIIBIS. 1'9s IIOLDE. BALDWIS. ASD FUJITA 

I1 . Fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  746 
A . Coiirdinate system.,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  746 
B . Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  746 

1 . The continuity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  747 
C . Flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-18 

1 . Origin and properties of the equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  748 
2 . 9 practical f l o ~  equation for multicomponent systems . . . . . . . . . . . . . . . . .  751 
3 . Correlation of sedimentation and diffusion measurements; equations for 

molecular weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  753 
4 . Translational frictional coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  755 

I11 . Measurement of sedimentation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  755 
A . Definition of sedimentation coefficient and of boundary position . . . . . . . .  756 
B . Relation of boundary position to  time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  759 
C . Polydisperse systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  760 
D . Theory for boundary-forming cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  762 
E . Conversion of sedimentation coefficients to  standard conditions . . . . . . . . . . .  764 

IV . Measurement of heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  764 
A . Measurement of sedimentation coefficient distributions . . . . . . . . . . . . . . . . . . .  764 

1 . Effects of diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  767 
2 . Effects of concentration dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  768 

B . Tests of homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  772 
C . Analysis for two solutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  773 

V . Study of interacting systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  775 
A . Constituent sedimentation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  775 
B . Monomer-polymer equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  777 
C . Complex formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  779 
D . Interconversion of isomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  779 

VI . Measurement of molecular weights during the approach t o  equilibrium . . . . . . . .  780 
VI1 . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  781 

Part  I11 . Fundamental theory of sedimentation processes in the ultracentrifuge 

I . Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  784 
I1 . The case in which the effect of diffusion is negligible . . . . . . . . . . . . . . . . . . . . . . . . .  785 

A . The radial dilution law.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  785 
. . . . . . . . . . .  787 

IV . A solution of the Faxen type in which s depends on c . . . . . . . . . . . . . . . . . . . . . . . . .  792 
V . The exact solution of rlrchibald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  795 

VI . Approximate treatments of the Lamm equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  801 
805 

VI11 . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  806 

111 . The approximate solution due to  Faxen . . . . . . . . . .  

VI1 . Pressure-dependent sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

INTRODUCTIOS 
Ten years ago a small conference on the ultracentrifuge was held . From a 

perusal of the brief account of this meeting (1) it will be apparent that  much of 
the discussion was organized around each of the several terms that appear in the 
familiar Svedberg molecular weight equation; further. centrifuge design and 
operation received much attention . It is perhaps just as well that descriptions of 
more than just the basic principles underlying the procedures in the laboratory 
and with the computing machine were not elaborate. because in the intervening 
years the whole theory of sedimentation analysis has undergone a profound 
change . The approaches to  the essential working equations through descriptions 
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of kinetic theory and of flow in binary systems have been or are being replaced 
by more general thermodynamic treatments. It is in order to attempt to consoli- 
date some of the significant changes and gains in these directions that the authors 
have prepared this report. 

The laws of sedimentation and diffusion have been the object of much ma1,he- 
matical study. Outstanding for their significance in connection with later develop- 
ments in ultracentrifugal analysis are the articles of Mason and Weaver bearing 
the titles “The Settling of Small Particles in a Fluid” (2) and “The Duration of 
the Transient State in the Settling of Small Particles” (4). While the teachings 
of these researches were restricted to sedimentation in a uniform gravitational 
field it was not long before the counterparts of their equations for centrifugal 
fields began to appear in the literature. Coincident with the contributions of 
Mason and Weaver came the remarkable conception and development of the 
ultracentrifuge by Svedberg and his associates (3). Great as were the abilities 
of these pioneers, one may pause to reflect whether they could have foreseen 
the manifold and complicated ways in which the theory (and practice) of sedi- 
mentation analysis would unfold. 

Except in a comprehensive monograph, a complete treatment of the subject 
can no longer be presented; hence this review is not a balanced, objective account, 
but rather the topics described are ones with which the authors have a relatively 
greater acquaintance. I n  the treatment of the transport cases, flow equations are 
derived by means of the thermodynamics of irreversible processes; for the equi- 
librium problem the Gibbs system of thermodynamics provides the essential 
working equations. I n  these ways there are obtained mathematical relationships 
which are more accurate than the experiments of the present day require. An 
important point is that  in the derivations of the expressions used for the calcula- 
tion of molecular weights it is not a t  all necessary to  assume ideal behavior (and 
in transport, two-component systems), although this has been quite common 
practice in the past. 

It is a well-known fact that the sedimentation methods have enjoyed a spec- 
tacular success in protein chemistry. It is nom apparent that because of his 
enthusiasm for the transport method the protein chemist has on occasion allowed 
himself to be carried to some excesses. For instance, ideal equations descriptive 
of behavior in two-component systems with no volume change on mixing have 
been used to  describe the experimental observations in multicomponent and not 
entirely ideal systems. Apparent single translational friction coefficients hclve 
been combined with other data and assumptions to provide information about 
the shape and volume of protein and polysaccharide molecules, when several 
such coefficients must have been involved. Other experiments have been per- 
formed to give amounts of water bound per gram of protein, but the theoretical 
interpretation of them has been inadequate. 

One of the main reasons why the experiments to determine the molecular 
weights of proteins have been so generally successful is because thermodynamic 
nonideality terms are relatively small with these globular homogeneous mole- 
cules. Sgain, Svedberg, Tiselius, Pedersen, and Lamm early realized that special 



718 JTILLIASIS, VAN HOLUE, BALUWIS,  1 S D  FUJITA 

mathematical problems were involved in the interpretation of sedimentation ex- 
periments in which charged molecules or ions are present. The several devices 
designed to repress the effects of charged niacro-ions, such as operation near the 
isoelectric point with a supporting electrolyte, have been largely effective be- 
cause the ratios of charge to weight in proteins were low. 

The polymer chemist, working with solutions of long flexible molecules, is 
often skeptical of the value of sedimentation measurements. The common optical 
systems, based upon ray optics, have made it necessary to work at too high 
concentrations of solute, with the rebult that  serious theoretical complications 
are introduced in the evaluation of the experiments. In  transport the pronounced 
dependence of the sedimentation coefficient in the now accessible ranges of solu- 
tion concentration produces an abnormal sharpening of boundary gradient 
curves ; in equilibrium it appears that the weight-average and other average 
molecular weights of this type of solute can be directly obtained only in ideal 
solutions, making almost imperative the use of the theta solvent. However, the 
ever-growing commercial importance of the synthetic high polymeric substances 
has accentuated the necessity of studying these systems in detail, and the sedi- 
mentation methods may yet come into significant use with them. 

It shall be the purpose of this review then to attempt to describe what may and 
what may not be done in sedimentation analysis-always froin the theoretical 
point of view-and to indicate the directions in which, in the opinion of the au- 
thors, immediate progress is most likely to be made. Each of the three sections 
which follow forms an entity, with its own set of equations, figures, and references. 
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PART I. THE SEDIMESTXTIOS-DIFFUSION E Q U I L I B R I U X I  
I. IXTRODUCTORP REMARKS 

There are many observable properties which are characteristic of systems in a 
state of internal balance or equilibrium. Of them, i t  is sedimentation equilibrium 
which is here involved. The effects of nonideality in any real system are so 
significant that the thermodynamic approach should be always employed in its 
study. Such an analysis possesses the advantage that the solution nonideality ob- 
served in sedimentation equilibrium may be related to  that found in other 
kinds of measurement, notably osmotic pressure and light scattering. The pur- 
pose of the sedimentation equilibrium method is commonly supposed to be that 
of finding the molecular weights of macromolecular substances; actually, from 
the measurement of the concentration distribution in sedimentation equilibrium 
much valuable information regarding the thermodynamic properties of the 
system is made available. 

The basic assumption is the validity of the first and second laws of thermo- 
dynamics. As other convenient assumptions are used they may be evaluated for 
the derivation of the more rigorous equations. The real point is that  the desired 
mathematical relationship descriptive of the behavior can be derived from a 
single equation which expresses the criterion for equilibrium in the system : 
namely, that  in the presence of the externally applied ultracentrifugal field the 
total potential of any constituent is constant in each phase, that  is, a t  each radial 
distance in the cell, a t  equilibrium. The system may be a mixture of many com- 
ponents. 

A .  BASIC DEFINITIOSS AXD EQUATIOIiS 

For a closed system of fixed composition and in a state of internal equilibrium 
the combination of the first and second laws of thermodynamics gives d E  = 
TdS - PdV. When the body is not of fixed composition there must be iiitro- 
duced into the equation the variables which determine the amount of each 
component and hence the composition of the system. In a homogeneous phase 
in which there are k different substances the composition may be given in terms 
of the mole numbers, nl, n2, 7 2 3 ,  . . . , n~ of the several substances in the whole of 
the phase. For variable composition the internal energy is 

E = E(S,  V ,  nl, n2, . , nk) 
and 

The Gibbs chemical potential, pi, is defined as 

719 
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d E  = TdS - P d V  + p ,  dn, 

B.  EQUILIBRIUM FOR TRAKSFER B E T W E E S  PHASES 

In an open system of several phases in thermal equilibrium there exists the 
possibility of free exchange of chemical substance between adjacent phases. It can 
be demonstrated that the condition of equilibrium with respect to these transfers 
requires that the chemical potential of each substance be the same in all of the 
phases. 

For the sedimentation equilibrium experiment there is an externally applied 
centrifugal potential which must be taken into consideration. In  addition, ions 
and charged molecules may be present in the system, giving rise to electro- 
chemical potentials. In  the presence of those additional fields of force, it  is the 
total potential, i t l ,  which is constant in all phases a t  equilibrium, thus: 

 AI^ u2r2 + z i 4  -- 
2 p i  = pi 

In  these equations, M ,  is the molecular weight of the i t h  ionic species or neutral 
component, IC. is the electrical potential of the phase, E is the charge per mole of 
protons, and z ,  is the valence of the ith component per mole in chemical units. 
In  the case of systems which contain only neutral molecules the electrochemical 
potential term does not appear. 

C .  COXCEKTRATION SCALES 

It is often necessary to transform concentrations and activity coefficients from 
one concentration scale to  another. Perhaps the most advantageous means for 
describing the composition of a solution is the use of the mole-fraction scales, but 
one often finds data in the literature expressed as a function of the molality of the 
solution. In  the study of transport phenomena another description of the compo- 
sition is required, one in which the concentration is specified in units of mass per 
volume of solution. The most common definition of ideality makes use of the 
mole-fraction scale. A solution ideal on this scale will not be exactly so on m or c 
scales. The transformation from one scale to another is achieved by algebraic 
methods. 

The activity coefficients of an ith component which correspond to the several 
concentration scales are defined by n-riting the corresponding expressions for 
p2,  the chemical potential per mole of this component. Because their values differ 
it is necessary to assign different symbols to the activity coefficients (and refer- 
ence potentials) of the several concentration scales. 
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The molality, m,, of the ith component is the number of moles of i per 1000 E:. of 
solvent. The volume concentration, c, ,  may refer either to the number of grams 
or to the number of moles of the component per 100 ml. of solution. (Small c, and 
capital C, are often used to make this distinction, but the activity coefficient has 
the same value, gz, in both cases.) The molal scale finds frequent use in the 
derivation of equations, since it possesses the great advantage that m, is inde- 
pendent of T and P.  Volume concentration scales are convenient in experimental 
operations, especially where the solutes involved cannot be freed from solvent. 
The concentrations are then obtained by measurement of refractive index, light 
absorption per unit volume, etc. Equations derived in terms of molalities may be 
converted to  expressions involving volume concentrations. 

11. BINARY SYSTEMS 
A. INCOMPRESSIBLE SOLUTIONS 

For a solution containing two electrically neutral components, a t  equilibrium 
in a centrifugal field, component 1 will arbitrarily be termed the solvent and 
component 2 the solute.‘ The criteria for equilibrium in this system are (2, 
15, 21): 

pu2r = o d P  
d r  
_ -  

Here r is the distance from the center of rotation of a rotor revolving with an 
angular velocity o. The quantities T ,  P ,  and p are the temperature, pressure, 
and solution density, respectively, a t  the point r ,  The chemical potentials and 
molecular weights of components 1 and 2 are denoted by p1 and p2, and 111, and 
Mz, respectively, a t  the pressure and composition a t  r. 

At constant temperature, the chemical potential of the solute is a function of 
the pressure and the molality of the solute. Then: 

Furthermore, 

1 Use is made of the term “solution,” implying as i t  does a distinction between solvent 
and solute. I t  is preferable to  refer to  a system vhich consists of two components. 
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Here PZ and ii2 are the partial molal volume and partial specific volume, re- 
spectively, of the solute. Combination of equations 4, 5 ,  and 6 then yields: 

This may be regarded as the fundamental equation for the sedimentation 
equilibrium of a binary system. For many purposes, it would be advantageous to 
replace the molality \\-ith the concentration in grams per deciliter. This can be 
done both simply and rigorously if it is assumed that the system is incom- 
pressible. Then, 

On this concentration scale, the chemical potential can be expressed as 

112 = 11: + RT In CZY? (9) 

Jyhere y2 is the appropriate activity coefficient.2 Then: 

+ c2 (10) 
Mz(l - f12P)u2r*C2 = 

RT { (”:)j$ 
Equation 10 can be used for the calculation of the molecular weight from sedi- 
mentation equilibrium data, if values of the quantity (a In y ~ / d c 2 ) ~  are available. 
Strictly speaking, these values should correspond to the hydrostatic pressure in 
the ultracentrifuge cell (22, 32). For the time being, hon-ex-er, we shall neglect 
both the dependence of the activity coefficient on pressure and the variation of 
the partial specific volume with solute concentration. That this is consistent is 
indicated by the relation ( 3 2 ) :  

where y is the activity coefficient on the molality scale. 
For many substances, particularly macromolecules of unknown molecular 

weight, the quantity (a ln y 2 / d c 2 ) p  is unknown, and so y e  require a method for 
extrapolating the data to infinite dilution, We shall assume that In y2 may be 
represented by a series of the form 

In y2 = BM2c2 + C,%&,’ + . . (12) 

where B and C are unknomn constants. Equation 10 then becomes: 

In an “ideal” system, y~ = 1, and equation 10 becomes 

This equation, or its equivalent, has been printed in many places. Hoyever, for organic high 
polymers in a 6’-solvent there is the polydispersity to  consider, and even in the simplest 
binary system the safe procedure is to  treat data Rith the full equation 10. 
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It has been suggested by Mandelkern, Williams, and Jl'eissberg (10) that equa- 
tion 13 be used directly for the extrapolation to infinite dilution, since a fairly 
broad concentration range is covered in most sedimentation equilibrium ex- 
periments. With the assumption that C = B2/8 ,  equation 13 may be rearranged 
to yield: 

Thus the square root of the left side of equation 14 could be plotted versus the 
solute concentration. However. as has been pointed out, extreme precision in the 
data is required. h further objection is that small amounts of heterogeneity 
would markedly affect the results obtained. For these reasons it would seem pref- 
erable, a t  least a t  the present time, to integrate equation 13 over the ultra- 
centrifuge cell in order to determine an ('apparent" molecular weight, which can 
be then extrapolated 
made of the relation 

which amounts to a 
iment. The quantity 
the solution column. 

to infinite dilution. In carrying out the integration, use is 

o (b2 - u') b b 

czrdr = c2ol  rdr = c2 2 (15) 

statement of the conservation of mass during the exper- 
c i  is the initial concentration, and a and b are the ends of 
Integration of equation 13 then yields? 

where p l  is the density of pure solvent. The term (1 - &&/100) arises from the 
fact that the solution density will be a linear function of the concentration if 
the partial specific volume is e on st ant.^ Equation 16 represents a working equa- 

3 A similar equation, in terms of differences in refractive index, has been developed by 
Van Holde and Baldwin (23). 

Evaluation of this term involves expressing the density as 

(1 - B?Pd 
P = P l + - - -  c2 

100 

and the approximation 

[' clrdr ?% c," [* 
Since in most cases 

i ' l C 2  
-- << 1 
100 

clrdr 

error. the approximation ~ i l l  not introduce a significant 
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- 

I 1 

tion for the extrapolation to  infinite dilution. If we define the “apparent” molec- 
ular weight by 

and assume that the concentration is sufficiently low so that only the first two 
terms on the right of equation 16 need be retained, then there results: 

Both M;” and (cz(b) + cz(u))/2 are measurable quantities. Equation 18 should 
be compared with the expression previously proposed by Wales, Adler, and Van 
Holde (27) for the extrapolation of ultracentrifuge data: 

This equation is similar to equation 18, except that the initial concentration, 
c X ,  has been used instead of ( c ( b )  + c(a)) /2 .  These two concentrations are ap- 
proximately the same, and become identical as the concentration gradients in the 
cell approach zero. However, the use of equation 19 in experimental work may 
ead to error, as shorn  by figure 1. A hypothetical solute with Mz = 2 X lo6, 

FIG. 1. 19 
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(1 - u p )  = 0.3, B = 1 X and C = 0 has been considered, and thequantities 
involved in equations 18 and 19 calculated. The solid line, which is a graph of 
lIIII";p vs. ci, show a pronounced curvature. This curvature is such that if data 
obtained a t  concentrations above 0.1 g./lOO ml. Tvere used to extrapolate to 
c i  = 0 an appreciable error in AI2 viould result. The dotted line represents the 
results which would be attained from attempted linear extrapolation of data ob- 
tained a t  concentrations of 0.1, 0.2, and 0.3 g./100 ml. and a rotor velocity of 60 
R.P.S. These results indicate that the use of equation 18 represents a substantial 
improvement orer the earlier practice. At lower rotor speeds the effect is much 
less pronounced. Equation 18 is of the same form as the equations which are used 
to extrapolate light-scattering and osmotic pressure data to infinite dilution. The 
molecular weight obtained by such an extrapolation of the sedimentation equilib- 
rium data is unaffected by solvation of the macromolecules, as has been shoim by 
Goldberg ( 2 ) .  It must be emphasized, however, that this statement applies only 
to  binary systems; it will be shown in the following sections that results obtained 
from experiments in ternary or more complex systems may be influenced by 
solvation. 

B. PRESSURE CORRECTIOfi-S 

The theory as outlined above should be satisfactory for the analysis of sedi- 
mentation equilibrium data obtained with the precision available a t  the present 
time. However, a number of assumptions have been made which must be ex- 
amined critically under special circumstances, and which will be no longer 
justified in general as experimental accuracy is improved. Two of these assump- 
tions are: ( 1 )  the solution is incompressible; (2) variation of the partial specific 
volume with concentration, and variation of the activity coefficient with pressure 
are negligible. A very general integrated form of the sedimentation equilibrium 
equation has been obtained by Young, Kraus, and Johnson (32) for cases where 
the above assumptions cannot be made: 

I n  this equation, the activity coefficients are referred to the pressure at  the 
meniscus of the solution (e.g., 1 atm.).  The partial specific volume is referred to 
the molality a t  the point r ,  but must be integrated oyer the range of pressure 
between a and r. The solution density must be integrated over the pressure and 
concentration betxeen a and r .  The symbol P(r ' )  represents the equilibrium 
pressure which exists a t  any point, T', in the cell where the molality is m2(r'), 
with r' being a variable with values from a to  r. 

If the proper data are available, equation 20 could be used in the form in which 
it is written. Since this would involve the numerical integration of the values of 
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Up, it is perhaps preferable to rewrite the equation in terms of a set of correction 
factors. The partial specific volume and density will be expressed in the form 

ijdm(r), P(r’j) = fii + q,m(r) + g p ( P ( r ’ )  - p ( a ) )  

p(m(r7, P(r’j)  = P I  + h,m(r’) + hp(P(r’) - P ( a ) )  

(21) 

(22) 

where fi,O and pl refer to the conditions of zero solute concentration and atmos- 
pheric pressure, and the coefficients g m ,  gP, h,, and hp are assumed to be inde- 
pendent of molality and pressure. Insertion of these equations into equation 20 
and neglect of all cross-terms in small quantities yield:5 

If r = b we obtain, to a good approximation: 

Qm { 1 - gg PI (1 + P1 mi + -0 V 2  m(b) + (!$ + h,) Cy)} 
where mi is the initial molality of component 2. The equations have been left in 
terms of molalities, since these corrections are most likely to be employed in the 
determination of the activity coefficients of materials of known molecular 
weight. For the determination of unknown molecular weights, the concentra- 
tions should be changed to some mass-based scale (grams solute per 1000 g. 
solvent, for example). The coefficients in equations 21 and 22 then must be 
referred to this scale. 

If refractometric methods are used for the determination of dmzldr, and 
hence m, other difficulties arise. Johnson, Kraus, and Young (6) have assumed 
that the refractive index gradient in the ultracentrifuge cell is given by 

dn = (e) dm + ($)m,Tg + E 
dr am P,T dr 

where the coefficients (anlam),,, and ( c ~ T z / ~ P ) , , ~  are independent of molality 
and concentration. The refractive index gradient from a reference experiment 
is given by 

is also made. 
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where nl is the refractive index of the solvent. The quantities E and E‘ are cor- 
rections for the distortion of the windows of the ultracentrifuge cell and may be 
assumed to be the same in both experiments. If it may be further assumed that 
the coefficients (anlap),,, and (an,/aP),  are identical, then the gradient in the 
molality may be calculated from: 

In  cases where the density of the solution and that of the solvent differ by only a 
small amount the application of the correction implied by the second term would 
seem doubtful, since the coefficients (anlap),,,, and (anJaP),  might differ by 
comparable amounts. 

111. TERSARY SYSTEMS 

A .  T H E  GESEKAL EQUATIOSS 

The system solvent(1)-macromolecular solute(2)-solvent(3) is of especial in- 
terest, since it represents either the system in which a macromolecular solute is 
dissolved in a “mixed solvent,” or the case in which the sedimentation equilibrium 
of a macromolecular solute is studied in the presence of a third substance of low 
molecular weight. It will be shown that in such ternary systems solvation, which 
was of no importance for binary systems, markedly influences the result. 

For simplicity, it will be assumed that the solution is incompressible, and that 
82, 83, and p are independent of composition. Then the chemical potential of any 
component may be regarded as a fiinction of the pressure and the molalities6 
of any two of the components. Therefore, inqtead of the single equation 8, one 
obtains the pair of equations: 

In  order to simplify the results to follon-, a more compact symbolism will be 
adopted : 

M,(l - t ’ % P ) W 2  A ,  = - 2RT 

(31) 

It can be shown (20) that:  

oJ3 = a3? (32) 

The use of molalities, instead of concentrations per unit volume, simplifies the treat-  
ment.  



728 WILLIAMS, V.4S I IOLDE,  BALI)WIS, AXD FUJITA 

The general sedimentation equations no\\- become : 

B. THE “BISDISG” COEFFICIEST 

To provide a thermodynamic measure of “solvation” or “binding” a number 
r will be defined as: 

This quantity can be thought of as a measure of the relative solvation of the 
macromolecule by components 3 and 1. Thus, if it is assumed that none of 
component 1 is bound by the macromolecular component, then a positive ~ a l u e  
of r may be interpreted as the number of moles of component 3 bound by each 
mole of component 2 .  In  general, it would seem wise to avoid such assumptions 
and regard r as a measure of relative “solvation” or “binding.” Similar quantities 
have been used by Stockinayer (20) in interpreting the light scattering of ternary 
systems, and by Wales and FJ7illiams (29) in their study of the sedimentation 
equilibrium in systems of this kind. 

Making use of the above definition, and solving equations 33 and 31 simul- 
taneously, expressions are obtained for the molality gradients of components 2 
and 3: 

If these concentration gradients can be independently measured in the ultra- 
centrifuge cell, it  is possible to calculate r from sedimentation equilibrium data. 
It can be shown from equations 36 and 3 i  that a t  low concentrations of com- 
ponent 2 ,  

r =  

Here the quantity ( d m 3 / d ~ ) ~  represents the gradient of component 3 in a reference 
experiment, in which only components 1 and 3 are present in the same concen- 
trations as before, i.e., 
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According to equation 38, the quantity r determines the gradient in the molality 
of component 3 produced by the existence of a gradient in the molality of com- 
ponent 2. 

Since it is sometimes advantageous, or even necessary, to use a “mixed solvent” 
in the determination of the molecular weight of a macromolecular substance, i t  is 
of interest to develop the equation for the extrapolation of the apparent molecular 
weight to  m2 = 0. It is assumed that the concentration gradient of component 2 
can be measured independently. Then, by rearranging equation 36 and setting 
(20) 

and 

where 

and 

1 
a33 = - + P e a  ma 

For materials of unknown molecular weight, a weight-based rather than mole- 
based concentration scale is preferable. Molalities will be replaced by the con- 
centrations W2 = M2m2, W3 = M3m3, in grams per 1000 g. of solvent. Similarly, 
the substitution r(M3/M2) = I“ will be made, where r’ now has dimensions of 
grams per gram. Then equation 42a becomes 

and in the limit as sir, -+ 0: 

Thus, if I“ Z 0 and (1 - gap) # 0,  the presence of component 3 will have two 
effects on the determination of the molecular weight. In  the first place, it  will 
alter the slope of the l / M ~ p p  vs. c2 graph, and secondly, it  will influence the limit 
approached as cq -+ 0. Since the quantity (1 - B3p) may differ appreciably from 
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zero, the second effect may be quite serious. This difficulty was first pointed out 
by Lansing and Iiraemer (9), who obtained equation 43 on the basis of a mo- 
lecular kinetic picture of solvation. The problem has also been considered by 
Wales and Williams (29, 30); their treatment, while more general than that pre- 
sented here in that it allows for heterogeneity of the solute, explicitly omits con- 
sideration of the noiiidenlity of components 2 and 3 .  

If, as is often the case, it is not poh>ible simultaneously to measure the con- 
centration gradients of components 2 and 3, the problem does not seem to allow a 
general solution. The quantity usually measured in a cedimentation equilibrium 
experiment is the refractiT-e index gradient, which for the ternary system con- 
sidered will be given by 

where $2 and $3 are differential refractive-index increments on the TI’ scale. 
Equations 36 and 37 can be inserted into equation 44, and the result rearranged to 
yield the equation: 

Here (dn/dr)o is the refractive index gradient from a “blank” experiment, where 
component 2 is absent. It is assumed that the concentration of component 3 
is approximately the same, in both experiments, at the point in question. Since 
the quantity TVZ is not measurable under the conditions assumed, equation 45 
cannot be generally used for extrapolation. If the sedimentation equilibrium 
experiments are carried out with a very short column of solution, it can be shown 
that at the center of the column TVZ may be replaced by the known initial con- 
centration SV,”, with negligible error. In  this case, equation 45 could be used, and 
the results extrapolated to infinite dilution. The apparent molecular Iyeight would 
then approach the limit 

which differs from ecpation 43 only in the inclusion of a term in the differential 
refractive increments. 

Perhaps i t  should be remarked at thii point that the situation is quite dif- 
ferent in the case of osmotic presure measurements in mixed solvents. At high 
dilutions (e2  -, 0), T = ( c 2 / X ) R T ,  and c2 is identical with the yolunie concentra- 
tion of the solution with respect to the macromolecular component. eyen if the 
addition of macromolecule alters the activity coefficients of the coniponentq of 
the solvent. On the other hand, it hac been demonstrated (20) that in light- 
scattering measurements both the slope and the intercept of the 1 , M ~ p p  n. 
mz curve may be altered by the preyelice of ;1 third component. 
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IT’. STROSG ELECTROLYTES 
If the solute in a binary system ionizes, the sedimentation equilibrium will be 

markedly affected by this ionization. I t  has been shown by Tiselius ( 2 2 )  and by 
Pedersen (15) that a single solute which dissociates into ( z  + 1) ions will yield an 
apparent molecular weight which is only ( l / ( z  + 1)) of the true value. In the 
determination of the molecular weights of proteins, i t  has been the general 
practice to add an excess of a low-molecular-weight electrolyte, in order to 
“sn-amp out” the electrostatic effects which produce the above-mentioned result. 
The sedimentation equilibrium established in such ternary systems (mncro- 
electrolyte, low-molecular-weight electrolyte, water) has been discussed in detail 
by Johnson, Kraus, and Scatchard ( 5 ) .  

Let us consider a systeni containing water, a macroelectrolyte PX,, and a low- 
molecular-weight electrolyte BX. It is assumed that the solutes ionize according 
to the equations: 

PX, --f PZ+ + zx- 
BX - + B ‘ +  X- 

It will be further assumed that the system is incompressible and thermodynamic- 
ally ideal, and that the partial specific volumes of all components and the 
density are independent of concentration. Then the sedimentation equilibrium 
equations, in terms of molalities, reduce to 

(47) d In mpr+ m2- - d In mpr+ d In mx- - + z- - 2APX;r - 
dr  dr dr  

(48) 
d In mB+ mx- - d In mB+ d In mX- 

dr 
= 2A~x. l ’  - 

dr  dr  

where 

We also have the condition of electrical neutrality: 

zmpr+ + mB+ = mx- 

It should be noted that the molalities of the ions mpe+ and mB+ are equal to the 
molalities of the neutral components mpx, and mBX, respectively; for brevity the 
latter will henceforth be written as mp and mB. Thus, equations 47 and 48 
become : 

(51) 

d l n  mp d lnmx- 
dr  dr = 2Ap.r  ((52) 

d lnmB d l n  mx- 
dr  dr = 2~4B ‘ r  (53)  
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If i t  is possible to measure simultaneously the concentrations of both neutral 
components, the problem of determining A, (and hence Mp) is relatively simple. 
The quantity d In mx-/dr can be eliminated between equations 52 and 53, to  
yield : 

(54) 
d l n m p  d I n m B -  

- z - -  2(Ap - zAB).r dr  dr 

When rearranged, and written in terms of the c scale: this becomes: 

1 d In cp - 1 d In CB 

r dr 2AP + ~ k ; ~  - (55) 

Since r ,  cp, cB, and AB are known, the left side may be plotted versus the quantity 
in brackets on the right, to obtain the charge 2.  Even if this is only roughly 
known, Ap  should be obtained with good precision, since the second term on the 
right of equation 55 will generally be small. 

I n  many cases, however, the only information available is the refractive index 
gradient, dnldr. As in Section 111, this will be expressed as 

where Op and OB are differential refract'ive-index increments on the c scale. 
Equations 52 and 53 may be solved simultaneously, with the aid of the con- 
dition of electrical neutrality, to  yield expressions for the concentration gradients 
of the neutral components: 

Cp-r (57) 

- .  - - - j- L q- 1 
12 MPCB ~ ~ ' P C B  1 

It has been assumed here that the solution is sufficiently dilute for ratios of con- 
centrations to be substituted for ratios of molalities. Equations 57 and 58 can be 
considerably simplified if it is permissible to neglect the term 

(s:) 
as compared to unity. For a solution containing 0.5 g./dl. of a macromolecule 
(Ill = 50,000 and z = 20) and 0.5 g./dl. (0.1 M )  of a low-molecular-weight 
electrolyte ( M  = 50), me have 

(;!p) = 0.01 

7 This will be permissible as long as both solutes are dilute and the solution is incompres- 
sible. 
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Keglecting terms of this order, equations 56, 57, and 58 are combined to obtain: 

where 

If from the above we subtract the "reference" gradient, which is given by 

the result, after neglecting the term 

Equation 62, like equation 45, will be suitable for use only for short columns of 
solution, because of the presence of the quantity CP. However, interesting in- 
formation can be obtained from a study of equation 62. I n  the first place, even 
though the system was considered ideal it can be seen that the apparent molec- 
ular weight depends upon the concentration of PX,. Furthermore, the correction 
term is inversely proportional to the concentration of the low-molecular-weight 
electrolyte. In  the hypothetical case considered above, the quantity 

would have the value 1.2 when the salt concentration was 0.1 M ,  and 1.02 when 
the salt concentration was 1 M .  The limit approached by the apparent molecular 
weight a t  c g  = 0 is also influenced. With the system considered above, if it  is 
assumed that both components have the same partial specific volume and dif- 
ferential refractive-index increment, the apparent molecular weight will differ 
from the true value by about 2 per cent. 
h somewhat different method for the analysis of the refractive index gradient 

has been developed by Johnson, Kraue, and Scatchard ( 5 ) .  They have chosen to 
use the experimentally measurable quantity X, defined as : 

(84) 
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It is then shown that the degree of polymerization N of a polyelectrolyte is given 
by 

2m3.9 4 
The primed quantities refer to the monomer unit, and the components 2 and 3 
are defined somewhat differently from the components PX, and BX used above. 
If this equation is rearranged and rewritten in terms of our nomenclature, and in 
terms of concentration in grams per deciliter, it  becomes 

where 

To a good approximation, one may neglect the quantity 

2 M* CP 

2 &fP CB 

in the denominator of the second 

u2(1 - 8p.p) - 
2RT 

term on the right of equation 66, and obtain 

where 

This equation is simpler to use than equation 62, since terms involving the 
specific refractive-index increments are absent because of the choice of the 
quantity S .  However, in practice it would be difficult to obtain the quantity S 
in an experiment with a short column of solution; on the other hand, if a long 
column is used the evaluation of the quantity cP/cB is uncertain. The situation 
with respect to macromolecular electrolytes may be summarized as follows : 
Unless a “supporting electrolyte” is added to  the solution the molecular weight 
obtained  ill be only l / ( z  + 1) of the true value. But the addition of another 
substance immediately complicates the picture by producing a second concentra- 
tion gradient in the ultracentrifuge cell. Unless the concentrations of both 
components can be measured, it is necessary to resort to some degree of approxi- 
mation. If the molecular weight of the macromolecule is high, or the charge is 
small, the error introduced will be small. Finally, there does not exist a t  the pres- 
ent time a theoiy which takes into account, besides the difficulties mentioned 
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above, the therniodyiianiic nonideality of the system. Presuniubly, such non- 
ideality would modify the coefficient which multiplies the factor cp/cB in eq1.m- 
tions 62 and 66. This, however, has not been demonstrated. 

I-. SEDIMENTATION EQCILIBRIUM I N  h DEXSITY GRADIENT 
A novel type of sedimentation equilibriiini experiment has recently been de- 

scribed by lIeselson, Stahl, and Vinograd (12). The system contains, in addition 
to the solvent, a dilute niacroniolecular component and a moderately concen- 
trated low-molecular-weight salt of high density. The sedimentation equilibrium 
of the latter component produces a density gradient in the cell; roughly speaking, 
if conditions are properly chosen the quantity (1 - Bp) for the macromolecular 
component will then be zero a t  home point in the cell; this component will then 
be distributed, a t  equilibrium, in a fairly narrow band about this point. 

The theory which Illesekon, Stahl, and T'inograd have developed for this type 
of experiment considers a macromolecular electrolyte, PX,, and a low-molecular- 
weight 1-1 electrolyte, XI-. The following asumptions have been made : 

I .  Deviations from thermodynamic ideality are neglected. 
2 .  The concentration of XI' and the solution density are linear over short 

distances in the cell: 

3. The solution is incompressible, and the partial specific volume and 
charge (n) of the macromolecule are independent of r ,  at least over short 
distances in the cell. 

With the above assumptions, and a few minor approximations, the concentration 
distribution for the macroelectrolyte is calculated to be : 

The concentration of the macromolecular electrolyte is seen to be Gaussian, with 
a maximum a t  ro and a standard deviation of u. The density of the solution at 
ra is shown to  be 

and the st'andard deviation is given by 

Equations 73 and 74 indicate that from an experiment of this type both tbe 
molecular weight and the partial specific volume of the solute can be obtained. 
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For materials which are available in oiily small amounts, this is a great ad- 
vantage. Furthermore, i t  is shown that for a heterogeneous solute both the 
number-average and the weight-average molecular weights (cf. Section VI) can 
be calculated. 

It is apparent that Meselson, Stahl, and Vinograd have provided a new idea in 
sedimentation analysis. To develop it further one might write equations to 
describe the influence of (‘solvation” or “binding”; in other ITords, go back again 
to  the thesis that the effects of thermodynamic nonideality generally require 
consideration. To treat the general case of a nonideal electrolyte system is be- 
yond the scope of the present summary. Hon-ever, a few remarks will be made for 
the analogous case where only neutral molecules are present. If the macro- 
molecule is component 2 ,  and the other solute called component 3, equations 33 
and 34 may be applied. At the maximum in the m2 vs. r curve,* dm2/dr = 0, and, 
dividing equation 33 by equation 34 : 

Then, with equations 32 and 35 this equation becomes 

In order to use a gram-per-gram, rather than a mole-per-mole basis, r’ = 

r(M,/MB) may again be substituted and equation 76 takes the form 

If I” grams of component 3 (and none of component 1) are bound to each gram 
of component 2 to produce a complex component, the partial specific volume of 
this complex component is given (2, 9) by 

Thus, the partial specific volume obtained by the method of Meselson, Stahl, and 
Vinograd must refer to the complex of macromolecule and component 3 and can 
be quite different from the value of F?. It may be expected that the molecular 
weight obtained will be affected in a similar way. 

VI. MULTICOJZPOKEST SYSTEMS 
8. AVERAGE MOLECULAR WEIGHTS 

Many macromolecular solutes i re  not homogeneous, but are mixtures of a 
large number of components differing in molecular weight. Recognition of this 

I t  can be shown that  for solutions dilute in component 2 (though not necessarily dilute 
in component 3) the quantity dmn/dr n-ill approach zero as dcz/dr approaches zero. Thus, 
for solutions w-hich are of the type normally studied the maximum will occur a t  the same 
point in the cell for both the c ?  vs. T and the m2 vs. T curves. 
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fact led Lansing and Kraemer (8) to define several average molecular weights 
which can be calculated for such materials, as follon-s: 

Here wz represents the n-eight of each component in the solute, and the summa- 
tion is carried over all solute components. The three averages given above are 
referred to as the “number-average,” “weight-average,” and %-average” 
molecular weights, respectively. It is possible to define higher average molecular 
weights Af2+2, etc.) in an analogous manner, but they are largely in- 
accessible to present-day experiments. 

The equations for describing the sedimentation equilibrium of a multicom- 
ponent system may be derived in a manner similar to that used for binary and 
ternary systems ( 2 ) .  It will be assumed that the density of the solution and the 
partial specific volumes of all components are independent of pressure and 
composition. Since many heterogeneous macromolecular solutes are mixtures of 
components differing only in molecular chain length, it will be assumed that 
partial specific volumes and the differential refractive increments are the same 
for all solute components. As before, the solvent will be component 1, and 
components 2 . . . n will be termed solutes. 

The chemical potential of each solute component will depend upon the pressure 
and the concentrations of all components. Then instead of the single equation 
(equation S), the set of n - 1 equations is obtained : 

Expressing the chemical potential of component i in terms of the concentration 
and activity coefficient 

pi = pq + RT In ciyi 

we have : 

Since i t  must in general be assumed that each activity coefficient is a function of 
all solute concentrations, the equations 83 are coupled in a very complex manner. 

In  order further to analyze the problem, simplifying assumptions must be 
made. For example, it  can be assumed that the system is thermodynamically 
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idealeg In this case, the second term on the right side of equation 83 vanishes, and 
we obtain: 

Equations 84 now can be rearranged and summed to yield 
n c CiMi 

c c i  

- i--2 M,, = 7 - 

where 

is the total solute concentration a t  the point r .  The quantity M,, is the weight- 
average molecular weight of the material a t  the point r .  This quantity then can 
be integrated over the (sector-shaped) cell to yield the weight-average molecular 
weight of the whole solute. 

- - J a  M ,  = s,’ cr dr (1 - Vp)u2cO(bZ - 2) 

A similar scheme can be used for the evaluation of M,. Wales (25) has developed 
a method for calculating successively higher average molecular weights, so that, in 
principle, it  is possible to calculate as many average molecular weights as de- 
sired. I n  practice, it  is found that the reliability of the results decreases rapidly 
for the higher average molecular weights. It should be pointed out as well that  it  
is not in general possible to calculate the number-average molecular weight 
directly from sedimentation equilibrium data. As was shown by Lansing and 
Kraemer (8), this can be done only if the solute concentration approaches zero a t  
some point in the cell. 

The methods outlined above n-ere used in the early experimental studies of the 
sedimentation equilibrium of heterogeneous materials. However, it  soon became 
evident that the assumption of thermodynamic ideality sometimes could lead to 
gross errors. For example, Mosimanii (13) and others (18, 19) found that the 
apparent molecular weight obtained from sedimentation equilibrium experiments 
with high polymers depended upon the solvent used, the concentration of the 
solution, and the rotor velocity, but they were not able to  describe the cause. 
Furthermore, the quantity M,,, which for a heterogeneous ideal solute should 
increase monotonically with distance from the center of rotation, was often 
found to pass through a maximum, or even decrease throughout the cell. 

This will be the situation for polymer solutions a t  the “ 8  temperature” (1) and approx- 
imately true for many protein systems. These are the cases described by Lansing 
and Kraemer (8). 
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It was eventually recognized that these effects arose from the pronounced 
nonideality of the high-polymer solutions. A partial solution was offered by 
Schulz (17) in 1944 and independently by Wales, Bender, Williams, and Ewart 
(28) in 1046. The two methods n-ere almost identical.1° 

The assumptions made by these workers were essentially the following : 
(1) Rather than assume that In y, = 0 (ideal solution), it was suggested 

that 

I n  yi = Bdlic (87) 

( 2 )  It was considered that the coefficient B is independent of the molecular 
weight of the polymer. I t  11-ould then follon- that B could be evaluated 
once and for all for any polymer-solvent system from the dependence of 
the osmotic pressure or light scattering upon concentration. 

Given these assumptions, equations 83 become 

(88) 
(1 - op)w2r  dc, dC 

= - + BM,c, - (i = 2 * .  4 RT dr dr 
M1 c1 

and these equations can be summed to yield an expression for M,,, which repre- 
sents a modification of equations 86 as follows: 

This equation provided the means for calculating the average molecular weights 
in a straightforward manner. 

The assumptions which were made to obtain equation 89 seemed justified by 
the theoretical and experimental knowledge which was available at the time. ,kt 
present, both of these assumptions are open to criticism. In the first place, it now 
seems evident that for high polymers the expansion of In yz should be extended a t  
least to terms in the squares and products of the solute concentrations, analogous 
to equation 13. Furthermore, it now appears that the single coefficient B must be 
replaced by an array of coefficients B%L,  which represent the interaction between 
the solute components i and k .  Thus, a more rigorous formulation of equations 
88 would take the form: 

Until more is known about the nature of the cross-coefficients and their relation- 
ships with the coefficients B,, and B,,, the analysis can be carried no further. 
Unfortunately, the information available (7) indicates that the 8 , A  are very 
complicated functions of and JIk. 

lo Perhaps it should be mentioned tha t  Gral6n ( 3 )  in 1944 developed a method based upon 
a molecular kinetic analysis for the correction of the nonideality effects by making use of 
the dependence of the rates of sedimentation and diffusion upon concentration. 
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These difficulties have been summarized by Mandelkern, Williams, and Weiss- 
berg (lo), who have suggested that the use of an ideal polymer-solvent system is 
essential in the study of high-molecular-weight heterogeneous polymers. 

The authors believe that the situation a t  the present time can be described to 
be somewhat as follom: For organic high polymers of moderate to low molecular 
weight ( A I x  < 100,000) the nonideality effects are generally so small that  the 
Schulz-Wales equation (equation 89) will give a good approximation to Mu 
if an estimate of B is available. On the other hand, for the measurement of higher 
molecular weights n-ith polymeric solutes there seems to be required an ideal 
system. For the globular proteins the nonideality effects are smaller, and should 
cause less difficulty, if the salt concentration is sufficient to “swamp out” elec- 
trostatic effects. 

B. DISTRIBUTIOK FUSCTIONS 

In  the discussion to this point of the sedimentation equilibrium in multi- 
component systems, methods are described whereby average molecular weights 
can be calculated. For many purposes, this information is sufficient. However, it  
should be pointed out that a t  least in principle the sedimentation equilibrium 
method is sensitive to the details of the distribution of molecular weight in the 
solute. For an ideal solution, the following relation must obtain between the 
molecular weight distribution and the concentration versus r curve : 

m 

c ( r )  = c ( b )  fb(!u)e--dls(r) + d-22 
0 

where 

and 

w2(1  - np)  (b‘ - r’) X ( r )  = 2R T 

The function f b ( M )  is the molecular weight distribution of the material at the 
bottom of the ultracentrifuge cell; f(M) is the overall molecular weight distribu- 
tion. Equation 91, or rather its equivalent for a distribution of radii of spherical 
particles, was obtained by Rinde (16) in 1928. Several methods were proposed by 
Rinde for the solution of this equation for f ( M ) ,  if the c vs. r or dc/dr vs. r curve 
is given. The most satisfactory method involved expressing fb(A1-r )  in a series of 
the forin 

n 

f b ( ~ )  = e-KM C u , ~ ’  (92) 

and evaluating the coefficients a, from the coefficients of a corresponding series 
which is obtained for e (? ) .  The method involves considerable labor, and the result 
is often unsatisfactory, in the sense that the distribution function which is ob- 
tained may have negative values in some regions. A similar method developed 

2=1 
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by Wales, Adler, and Van Holde (27) involves fitting f(M) by a series of Laguerre 
polynomials. While the labor involved in the use of this method is considerably 
less, the resulting distribution may still be negative in some regions. Still another 
and similar method has been developed by Herdan (4). 

Because of the difficulty in obtaining satisfactory solutions to equation 91 sin 
entirely different procedure has been frequently employed (24,261 to obtain some 
information about the molecular JTeight distribution. If several average moleculnr 
weights of a material are known, it may be possible to  find a molecular weight 
distribution which would yield those averages. The process generally involves 
selecting a distribution function of a reasonable form, with as many adjustable 
parameters as there are reliable average molecular weights available. These 
average molecular weights are then used to calculate the parameters. A hazard 
in the use of this procedure is illustrated by figure 2, in which are shown three 
“distributions” each of which will yield the set of molecular weights 111% = 

200,000, M ,  = 300,000, and Mz+l = 400,000, If these average molecular weights 
were the only information available, it would be impossible to  choose between 
these (or many other) distributions. In fact, it  can be shown that it is always 
possible to fit three average molecular weights by an appropriate ?election of the 
molecular weights and relative amounts of only two solute components. 

If for some kinetic or statistical reason it is known that the molecular weight 
distribution of a substance is of a particular form, the above procedure may be 

c .--, 
I 

/ [ I I 

, 
I 

FIG. 2. Three “distributions,” each of which R-ill yield the set of molecular weights 
Mu = 200,000, M ,  = 300,000, and M 3 + l  = 400,000. The dimensions of j ( M )  are arbitrary. 
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used to great advantage. In other cases, however, this method has little to 
recommend i t ;  it  would seem preferable to simply give the mean of the distribu- 
tion ( M w )  and a measure of its breadth such as the standard deviation: 

112 

u = AIw (2 - 1) 

1'11. THE T I M E  REQCIREU TO ,$TTAIN SEDIMESTATIOS EQUILIBRIUM 
The time required to carry out a sedimentation equilibrium experiment i i  de- 

termined in most cases by the time necessary to approach to within a negligible 
error the equilibriuni coiiceiitratioii gradient. Although several devices have been 
developed which allow several experiments to be carried on simultaneously, the 
long time frequently required always has been considered to be a disadvantage of 
the sedimentation equilibrium method. T h w ,  it is worthwhile to investigate the 
factors which determine this time. 

Mason and Weaver (11)) in 1924, solved the differential equation for the 
sedimentation of a single, ideal solute in the gravitational field. From this 
solution, Weaver (31) calculated the time to attain equilibrium to be not sensibly 
greater than twice the time required for the solute to sediment from the meniscus 
to the bottom of the cell. This rule was used for many years to estimate the time 
required for sedimentation equilibrium experiments. The problem has recently 
been reinvestigated by Van Holde aiid Baldwin ( 2 3 ) ,  who point out that the 
conditions which Weaver assumed are not applicable to most sedimentation 
equilibrium experiments in the ultracentrifuge, aiid that Weaver's rule represents 
a limiting  la^. This point has been noted independently by Pasternak, Sazarian, 
and Viiiograd (14). 

The authors have developed a nely procedure to estimate this time which is 
more appropriate to the problems a t  hand. Since the quantity desired from the 
sedimentation equilibrium experiments is the molecular weight of the solute, the 
quantity adopted as a measure of the displacement of the system from equilib- 
rium is 

Here AI:(t) represents the value which would be obtained for the molecular 
weight if the experiment were stopped a t  the time t .  It can be shown, by using 
Mason and Weaver's analysis," that under conditions relevant to most exper- 
iments, the time required to reduce E to any given value is 

where 
1 U(ff) = 1 + - 47rW 

11 The applicability of the Mason and Weaver treatment for a rectangular cell in a 
gravitational field to  problems in the ultracentrifuge has been investigated by Yphantis 
and Waugh (33). I t  is found that  in most case7 of interest the error involved is negligible. 
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and 

In  equation 9-1 D is the diffusion coefficient of the solute, and ( b  - a)  is again the 
length of the column of solution. This equation indicates that the equilibrium 
state can be attained most rapidly if: 

(1) The solution column is made as short as possible. 
( 2 )  The ultracentrifuge is operated a t  as high a rotor TTelocity as possible. 

With regard to the first condition, 2-3 mm. has been found to be convenient for 
many experiments, as contrasted to the 7-10 mm. commonly used. The prin- 
cipal disadvantage is that for the analysis of heterogeneous Polutes some of the 
resolving poiver of the ultracentrifuge is lost. If the length of the solution column 
is decreased still further (to about 1 mm.), the equilibrium is attained very 
rapidly. In  this case, it is convenient to  measure the refractive index gradient at  
only one point, the center of the column of the solution. The molecular weight 
now can be calculated by assuming that the concentration is the same as the 
initial concentration. In these very short columns this approximation will be very 

A practical limit to the second condition is imposed by the fact that if the rotor 
velocity is too high the refractive index gradients at the bottom of the cell d l  
throw light completely out of the optical system. 
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